Friday, March 9, 2018

73. Construct Binary Tree from Preorder and Inorder Traversal

public class Solution {
    /**
     * @param inorder: A list of integers that inorder traversal of a tree
     * @param postorder: A list of integers that postorder traversal of a tree
     * @return: Root of a tree
     */
   
    private int findPosition(int[] arr, int start, int end, int key) {
        int i;
        for (i = start; i <= end; i++) {
            if (arr[i] == key) {
                return i;
            }
        }
        return -1;
    }
   
   
     private TreeNode myBuildTree(int[] inorder, int instart, int inend,
            int[] preorder, int prestart, int preend) {
        if (instart > inend) {
            return null;
        }

        TreeNode root = new TreeNode(preorder[prestart]);
        // 在inorder中找到了root的位置
        int position = findPosition(inorder, instart, inend, preorder[prestart]);
       
        // 找到左子树和右子树分别为多大
        int leftSubLength = position - 1 - instart;
        int rightSubLength = inend - (position + 1) ;
       
        //  找root的left child 和right child
        //  即在preorder中root后leftSubLength长度的数组为左子树
        //  rightSubLength 长度的数组为右子树
        //  左右子树的第0为左右子树的root
        root.left = myBuildTree(inorder, instart, position - 1,
                preorder, prestart + 1, prestart + 1 + leftSubLength);
        root.right = myBuildTree(inorder, position + 1, inend,
                preorder, prestart + position - instart + 1, preend);
        return root;
    }

    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if (inorder.length != preorder.length) {
            return null;
        }
        return myBuildTree(inorder, 0, inorder.length - 1, preorder, 0, preorder.length - 1);
    }
}

No comments:

Post a Comment

4. Ugly Number

1*2(t2) 2*2 3*2 (t3)1*3 2*3 3*3 (t5)1*5 2*5 3*5 1*2 2*2(t2) 3*2 1*3(t3) 2*3 3*3 (t5)1*5 2*5 3*5 Solution: public int nthUglyNumbe...